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Background and Research Questions

The Big Picture Our Questions

1. Artificial Intelligence — an important
technique of algorithmic trading in finance 1. Agenerally applicable data science
and cryptoeconomics. pipeline:

What are the inputs, analysis, and output dashboard in this workflow?

2. Lack of established pipeline leads to process

Inconsistency and makes ceteris-paribus 2. A comparative study in Applications to
comparison difficult. Finance and Cryptoeconomics:
How can this data science pi_pelir_le be g_enerally applicable to design,
3. NoO open-source coding algorithms \E)Jict)ﬁr(?(:Tr]]’vae?](tjice);]/glll;?;e()?iltgl‘]?]zlst?mlctradmg of stock and crypto assets
to evaluate and compare different trading
strategies.
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Main Results

1 Data Science
Pipeline
2 Demonstration
with algorithms

https://whimsical.com/figl-GkT91dQfNvYLfY1pTJ5T6g
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Inputs
Analysis
Output Dashboard
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Moving Averages
VWAP
Sentiment Analysis
Pairs Trading
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Finance
Cryptoeconomics

________________

3 visualization

Cash and holdings
ROI
Sharpe Ratio
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Data Source and Methodology

Moving Averages (MA) Crossover

Volume-Weighted Average Price (VWAP)

Data Sources Assets Calculate Index Buy Signal Data Sources Input Variables Calculate index Buy Signals
Tesla (TSLA) " SWMA ] Historical Pri Pri
APl Documentation Apple (AAPL) eond Sroriesr e VWAP reecross
| Alpha Vantage o Short-window crosses above ' Frequency: intraday abhove VWAP
E g Bitcoin (BTC) evina LWMA Start date: 2022-02-08
Ether (ETH) s e End date: 2022-02-11 Trading Condition Sell Signats
Input Variable Trading Condition Commonly 50-Days Sell Signal = o Price cross
' ssets . ol
Historical Close Price Initial capital: 10,000 | SWMA API Initial Capital: 100,000 USD below VAP
. . . Max_buy: 1,000,000
Frequency: Daily crosses below Documentation Ethereum (ETH) Evaluations
. max_buy: 10,000,000 o Max_sell: 1,000,000
Start date: 2020/01/01 Long-window LWMA | Alpha Vantage Bitcoin (BTC)
max_sell: 10,000,000 ) Gas fee: 0.1%
End date: 2022/02/04 P, Moving Average ROI
gas fee: 0.1% (LWMA) Evaluations Sharpe Ratio
Commonly 200-Days
ROI
Sharpe Ratio
t
n 1 E })t ) Qt
SMA} =— > p VWAP =
mn

t=t—mn-+1

2. Q:
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Data Source and Methodology

Sentiment Analysis

Pairs Trading

Data Sources 1 l Input Variable 1 Buy Signal Data Sources

| ’ Pairs Selection using Machine Learning | l

Buy A and Short B Signal |

1 Calculate Index l

| |

Historical Prices

. Mean Reversion
Unsupervised

Spread < buy threshold

EMA Price-EMA< -std(Price-EMA) & Compute Dimensionality & Cointegration
— = Machine L ing =
e Positive Sentiment ROI Reduction (PCA) ac ('O":_”;;)mmg Tests
Frequency: Daily | ShortAandBuyBSignal |
Start date: 2021-01-01 [ ]
- End date: 2021-06-01 | — ] Sell signal I Pairs Selection using Brute Force Spread > short threshold
) : API|
yfinance PyPI VADER Price-EMA > std(Price-EMA) & Documentation Sum of Standard Select top k pairs l Sell and Payback Signals |
Negative Sentiment | Alpha Vantage Deviations (SDD) with the smallest SDD
Data Sources 2 Input Variable 2 I g Spread = exit
Sentiment Category I - | I : = Calculate Simple Spread ] [ Calculate Normalized Spread ]
= i Tweets | Evaluation I Input Variables Trading Condition
= (Positive, Negative) — _— Spread_simple = Spread_normal =
Frequency: 1 tweet ROI o ) initial_capital: 10,000 l_JSD PriceA - PriceB PriceA/PriceA_0 - PriceB/PriceB_0
Start date: 2021-01-01 Historical Close Prices max_number_of_pairs: 20
End date: 2021-06-01 Sharpe Ratio Frequency Daily transaction_fee: 0.01 Define Thresholds |
s nd date: Start date: 4/22/2021 gas_fee: 0.001
End date: 10/22/2021 borrow_fee: 0.01 Define: Define:
ithub: : A social i iti : = '
Github: snscrape: A socia e Trading Condition I max_buy: 1000000  mu=mean(Spread) sigma = standard deviation (Spread)
networking service max_sell: 1000000 sigma = standard deviation (Spread)
. - _— max_short: 1000000
scraper in Python A;.Jple. (AAPL) Initial capital: 100000 buy threshold = mu - 2 sigma buy threshold = - 2 sigma —
Bitcoin (BTC) max_buy: 10000000 Assets short threshold = mu + 2 sigma short threshold = 2 sigma
Ether (ETH) max_sell: 10000000 exit =mu exit=0 ROI

Dataset 1: S&P500
Dataset 2: Digital Currencies

gas fee: 0.1%

Sharpe Ratio
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Introduction to Data Science Pipeline
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Introduction to Data Science Pipeline

Input Calculate
Variables Index

Generate Buy
and Sell Signals

Evaluate ROI

Connect with Data
Source API

Specify ) . Monitor Cash and
] Execute Algorithmic )
Trading — Trading Strategies Holding Account
Conditions 2 2 & Total Asset
Inputs Analysis Output

Dashboard

Figure 1: Our proposed data science pipeline for algorithmic trading
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Demonstration with Four
Conventional Algorithms

Moving Averages Crossover
Volume-Weighted Average Price
Sentiment Analysis

Pairs Trading
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Moving Averages Crossover

Date

Close
Short MA

Long MA

Signal

daily
daily
daily

daily

YYYY-MM-DD Date and time for which the data were recorded
USD Price at which the stock ended trading in a given time period
USD Average price of a security within a certain period,

typically 50 days

USD Average price of a security within a certain period,
typically 200 days

- Buy-and-sell signal (e.g., TSLA, AAPL for stock,
BTC, ETH for crypto)

Table 1. Moving Average Crossover: Data
Data Source: Alpha Vantage API
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Moving Averages Crossover

Take Ether (ETH) for example:

ETH Buy and Sell Signals: MA Crossover Rule

50-day Moving Average

o 4000 —— 200-day Moving Average
g Price in USD
£ buy
9 3000 V sell . . . .
E Figure 2: Buy-and-Sell Signal:
] .
3 o0 ETH moving averages crossover
o
=]
=
@ 1000
&
a
0
May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021 Mar 2021 May 2021 Jul 2021 Sep 2021
date
ETH Portfolio Time Series: MA Crossover Automated Trading Strategies
Cash
Holding
20M

—— Total

Figure 3: Portfolio time series:
. - ETH moving averages crossover

May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021 Mar 2021 May 2021 Jul 2021 Sep 2021
date
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Moving Averages Crossover

Take Ether (ETH) for example:

Ratio

Percent

ETH Gross ROI: MA Crossover Strategy

MA ROT

120 —— Buy&Hold ROI

100
80
60

40

2 W

May 2020

Jul 2020 Sep 2020 Nov 2020 Jan 2021 Mar 2021 May 2021 Jul 2021 Sep 2021

Days

ETH Annualized Sharpe Ratio: MA Crossover Strategy

MA Sharpe Ratio
Buy&Hold Sharpe Ratio

May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021 Mar 2021 May 2021 Jul 2021 Sep 2021

Days

Figure 4: Gross ROI: ETH moving average
crossover vs. buy-and-hold

Moving average crossover strategy ROI: 849.84%
Buy & hold strategy ROI: 11.97%

Figure 5: Sharpe Ratio: ETH moving average
crossover vs. buy-and-hold

Moving average crossover strategy Sharpe ratio: 0.98
Buy-and-hold strategy Sharpe ratio: 2.60
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Volume-Weighted Moving Average

Date 5 min YYYY-MM-DD Date and time for which the data were recorded
HH:MM:SS
Close 5 min USD Price at which the stock ended trading in a given time period
VWAP 5 min USD Average price of a security within a day, adjusted for its

volume. Available for an API call only for traditional stocks;
manually calculated using the formula for crypto

Ticker - - Stock symbol (e.g., TSLA, AAPL for traditional,
BTC, ETH for crypto)
Interval 5 min min/hr/day Time difference between two data points

Table 2: Volume-Weighted Moving Average: Data
Data Source: Alpha Vantage API
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Volume-Weighted Moving Average

Take Ether (ETH) for example:

ETH Buy and Sell Signals: VWAP Crossover Rule

—— Price in USD
—— VWAP Line
buy

V sell

3250
3200

3150

Figure 6: Buy-and-Sell Signal:
ETH volume-weighted moving average

3100
3050
3000
2950

2200

Volume Weighted Average Price in USD

12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00
Feb 8, 2022 Feb g, 2022 Feb 10, 2022 Feb 11, 2022 Feb 12, 2022

date

ETH Portfolio Time Series: VWAP Crossover Automated Trading Strategies

100ks—,

Cash

’7 T T Holding

— Total

80k

Figure 7: Portfolio time series:
ETH volume-weighted moving average

60k

usp

40k

20k

date
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Volume-Weighted Moving Average

Take Ether (ETH) for example:

ETH Gross ROI: VWAP Strategy vs. Buy&Hold

Gross ROI
Buy&Hold Gross ROI

Figure 8: Gross ROI: ETH volume-weighted
moving average vs. buy-and-hold

Percent

Moving average crossover strategy ROI: -3.93%
-4 W Buy & hold strategy ROI: -4.26%

date

ETH Sharpe Ratio: VWAP Strategy vs. Buy&Hold

Annualized Sharpe Ratio
Buy&Hold Annualized Sharpe Ratio

Figure 9: Sharpe Ratio: ETH volume-weighted
moving average vs. buy-and-hold

Percent

Moving average crossover strategy Sharpe ratio: -1.62
. Buy-and-hold strategy Sharpe ratio: -0.52

100 200 300 400 500
date
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Sentiment Analysis

Variable Name
Date
Tweets
Stock Price

Crypto Price

ID Frequency Unit
Peomp per tweet N
EMA,;

dail usD
(10-day) y
Raw Tradin
- g daily UsD
Position
Negative,
Sentiment . gatve,
Cat daily Positive,
ategor
gory Neutral
Tradin
cing daily -
Positions

Table 3: Sentiment Analysis: Raw Variables
Data Sources: Snscrape API, Yahoo Finance API, Alpha Vantage API

Frequency Unit
daily YYYY-MM-DD
daily UsD
daily UsD

Description

A normalized compound score that sums every lexicon rating and takes values from
-1to1

Exponential moving average of adjusted closing price, where EM Ay = Py and
EMA;=(1—a)EMA; 1+ P,,a=2/(s+1). For span s > 1, s : decay in terms of span
P, : day t closing price

P, — EMA,
Negative: Peomp < Promp — 0.20 Py,
Positive: Peomp > Peomp + 0.20 oy

Neutral: Peomp = Peomp — 0.20 By, O Peomp < Preomp + 0.20 By

1 represents buy, and -1 represents sell

Table 4: Sentiment Analysis: Calculated Variables
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Sentiment Analysis

Take Bitcoin (BTC) for example:

BTC Buy-and-sell Signal: Sentiment Analysis

65k Adj Close Price
—— STD (price-EMA)
60k buy
Sk Avar -l

55k
[a]
L] 50k
2 0
£
.g 45k
o

40k

-5k
= Figure 10: Buy-and-Sell Signal:
0k o BTC Sentiment Analysis
0 20 40 60 80 100 120 140
Days
@ nNegative

pos Positive
£
)
-]
i
-
g
E
=
@

s O@ @ N [ o0

0 20 40 60 80 100 120 140
Days
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Sentiment Analysis

Take Bitcoin (BTC) for example:

BTC Portfolio time series: sentiment analysis

Cash

200k
— Holdin
f_I['f ~ —— Total ’
150k ﬂ ‘ ‘
Figure 11: Portfolio time series:

' BTC Sentiment Analysis
\ \

uUsD
o
(=]
j}\

50k |

0 20 40 60 80 100 120 140
date
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Sentiment Analysis

Take Bitcoin (BTC) for example:

BTC Gross ROI: sentiment analysis vs buy-and-hold

120
100
80

60

Percent

40

20

Days
Figure 12: Gross ROI: BTC Sentiment
Analysis vs Buy-And-Hold

Sentiment strategy ROI: 54.57%
Buy & hold strategy ROI: 27.00%

140

Sharpe Ratio: Sentiment Strategy VS. Buy&Hold

Sentiment ROI
Buy&Held ROI Sentiment Sharpe Ratio
Buy&Hold Sharpe Ratio

2.5

1.5

Ratio

0.5

0.5

Days

Figure 13: Sharpe Ratio: BTC Sentiment
Analysis vs Buy-And-Hold

Sentiment strategy Sharpe Ratio: 1.24
Buy & hold strategy Sharpe Ratio: 0.69
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Pairs Trading

Variable name Description
. . P-value P-value from Engle and Granger's cointegration test
Variable name  Frequency Unit
The Hurst exponent is a value between 0 and 1 that serves to evaluate the mean-reversion property of a
Date daily YYYY-MM-DD LLTEHEDOent time-series
Close daily usD Half-life A value X that tells how long it takes for a time series to mean-revert
Asset Name - - Times Crossing the

Mean Times the spread goes across the mean during the formation period

Table 5: Pairs Trading: Data

Data Source: Alpha Vantage API Table 6: Pairs Trading: Calculated Variables

Threshold = Value Using Sgpe  Value Using Spommal

Short 20 w+ 20
B i s Table 7: Pairs Trading: Trading Signals
Exit 0 I
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Pairs Trading

Take Binance USD Token (BUSD) & EOS.10 Token (EOS) pair for example:

Buy-and-sell Signal: pairs trading

Portfolio time series: pairs trading
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Pairs Trading

Take Binance USD Token (BUSD) & EOS.10 Token (EOS) pair for example:

Portfolio time series: pairs trading Gross ROI: pairs trading vs buy-and-hold

£000 Cash 25 — Paris Trading ROI
— Debt — ROI Buy&Hold
4# — Holding 20
Total

4000

15

‘ 1 10
2000 | |

usp

o
Percent

(=] wu
-

—-2000

=10

e e e dateAug o e e o May 2021 Jun 2021 Jul 2021 Aug 2021 Sep 2021 Oct 2021
date
_ o _ Figure 16: BUSD & EOS Gross ROI: Pairs
Figure 15: BUSD & EQS Portfolio time series: Trading vs buy-and-hold
Pairs Trading

Pairs Trading strategy ROI: 24.92%
Buy & hold strategy ROI: 0.00%
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Future Research and Practices

Existing Trading

Algorithms
L )
verify
S S
1 : T T T TS T Tt T T ]
) . ! design, ! . :
: Our Da.ta s.c'e"ce :—implement.—bi New Tfadmg |——_————- + Crypto Assets Valuation
| Pipeline ! evaluate . Algorithms [
L ] I_________________,I
produce S :
' Customize various !
,_______l_ ______ \ : settings : ‘;
. Our Open-Source | ) !
] Code : :"-' = = =» Efficient Experiment Environments
L ) '
Serve more advanced )

algorithms

__________________

https://whimsical.com/fig2-N8PAxb9LXxMDSoeW4yyzrdF . g
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Thank you

Working Paper: https://arxiv.org/abs/2206.14932

Data and Code: https://github.com/sciecon/srs2021
~

Corresponding to Luyao (Sunshine) Zhang:
12183 @duke.edu
yulinzurich@gmail.com

Duke Scholar Page for Sunshine:
http://scholars.duke.edu/person/luyao.zhang

Industry 4.0 Open Educational Resource Initiatives:
https://ie.pubpub.org/
https://ce.pubpub.org/
https://ie.pubpub.org/
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