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Background and Research Questions
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The Big Picture Our Questions

1. Artificial Intelligence – an important 

technique of algorithmic trading in finance 

and cryptoeconomics.

2. Lack of established pipeline leads to process 

inconsistency and makes ceteris-paribus 

comparison difficult.

3. No open-source coding algorithms

to evaluate and compare different trading 

strategies.

1. A generally applicable data science 

pipeline:

2. A comparative study in Applications to 

Finance and Cryptoeconomics:

What are the inputs, analysis, and output dashboard in this workflow?

How can this data science pipeline be generally applicable to design, 

program, and evaluate algorithmic trading of stock and crypto assets 

with conventional algorithms?
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Moving Averages (MA) Crossover Volume-Weighted Average Price (VWAP)
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Sentiment Analysis Pairs Trading
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Figure 1: Our proposed data science pipeline for algorithmic trading
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Moving Averages Crossover
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Variable Frequency Unit Description

Date daily YYYY-MM-DD Date and time for which the data were recorded

Close daily USD Price at which the stock ended trading in a given time period

Short MA daily USD Average price of a security within a certain period, 

typically 50 days

Long MA daily USD Average price of a security within a certain period, 

typically 200 days

Signal - - Buy-and-sell signal (e.g., TSLA, AAPL for stock, 

BTC, ETH for crypto)

Table 1: Moving Average Crossover: Data

Data Source: Alpha Vantage API



Moving Averages Crossover
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Figure 2: Buy-and-Sell Signal: 

ETH moving averages crossover

Take Ether (ETH) for example:

Figure 3: Portfolio time series: 

ETH moving averages crossover



Moving Averages Crossover
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Figure 4: Gross ROI: ETH moving average 

crossover vs. buy-and-hold

Moving average crossover strategy ROI: 849.84% 

Buy & hold strategy ROI: 11.97%

Take Ether (ETH) for example:

Figure 5: Sharpe Ratio: ETH moving average 

crossover vs. buy-and-hold 

Moving average crossover strategy Sharpe ratio: 0.98

Buy-and-hold strategy Sharpe ratio: 2.60



Volume-Weighted Moving Average
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Variable Frequency Unit Description

Date 5 min YYYY-MM-DD

HH:MM:SS

Date and time for which the data were recorded

Close 5 min USD Price at which the stock ended trading in a given time period

VWAP 5 min USD Average price of a security within a day, adjusted for its 

volume. Available for an API call only for traditional stocks; 

manually calculated using the formula for crypto

Ticker - - Stock symbol (e.g., TSLA, AAPL for traditional, 

BTC, ETH for crypto)

Interval 5 min min/hr/day Time difference between two data points

Table 2: Volume-Weighted Moving Average: Data

Data Source: Alpha Vantage API
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Volume-Weighted Moving Average

Figure 6: Buy-and-Sell Signal: 

ETH volume-weighted moving average

Take Ether (ETH) for example:

Figure 7: Portfolio time series: 

ETH volume-weighted moving average



Volume-Weighted Moving Average
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Figure 8: Gross ROI: ETH volume-weighted 

moving average vs. buy-and-hold

Moving average crossover strategy ROI: -3.93%

Buy & hold strategy ROI: -4.26%

Take Ether (ETH) for example:

Figure 9: Sharpe Ratio: ETH volume-weighted 

moving average vs. buy-and-hold

Moving average crossover strategy Sharpe ratio: -1.62

Buy-and-hold strategy Sharpe ratio: -0.52



Sentiment Analysis
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Table 3: Sentiment Analysis: Raw Variables

Data Sources: Snscrape API, Yahoo Finance API, Alpha Vantage API

Table 4: Sentiment Analysis: Calculated Variables
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Sentiment Analysis

Figure 10: Buy-and-Sell Signal:

BTC Sentiment Analysis

Take Bitcoin (BTC) for example:
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Sentiment Analysis

Take Bitcoin (BTC) for example:

Figure 11: Portfolio time series:

BTC Sentiment Analysis



Sentiment Analysis
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Figure 12: Gross ROI: BTC Sentiment 

Analysis vs Buy-And-Hold

Sentiment strategy ROI: 54.57%

Buy & hold strategy ROI: 27.00%

Take Bitcoin (BTC) for example:

Figure 13: Sharpe Ratio: BTC Sentiment

Analysis vs Buy-And-Hold

Sentiment strategy Sharpe Ratio: 1.24

Buy & hold strategy Sharpe Ratio: 0.69



Pairs Trading
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Table 5: Pairs Trading: Data

Data Source: Alpha Vantage API
Table 6: Pairs Trading: Calculated Variables

Table 7: Pairs Trading: Trading Signals
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Pairs Trading

Figure 14: Buy-and-Sell Signal:

BUSD & EOS Pair Trading

Take Binance USD Token (BUSD) & EOS.IO Token (EOS) pair for example:



Pairs Trading
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Figure 16: BUSD & EOS Gross ROI: Pairs 

Trading vs buy-and-hold

Pairs Trading strategy ROI: 24.92%

Buy & hold strategy ROI: 0.00%

Take Binance USD Token (BUSD) & EOS.IO Token (EOS) pair for example:

Figure 15: BUSD & EOS Portfolio time series:

Pairs Trading
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