A Data Science Pipeline for Algorithmic Trading:

A Comparative Study in Applications to Finance and Cryptoeconomics

Co-authors: Luyao Zhang*, Tianyu Wu, Saad Lahrichi, Carlos-Gustavo Salas-Flores, and Jiayi Li

The First International Symposium on Recent Advances of Blockchain Evolution: Architecture, Intelligence, Incentive, and Applications (BlockchainEvo 2022), Espoo, Finland Date: August 22-25, 2022

©Luyao Zhang, Tianyu Wu, Saad Lahrich

CONTENTS

0. At a Glance

- 1. Introduction to Data Science Pipeline
- 2. Demonstration with Four Conventional Algorithms
- 3. Future Research and Practices

At a Glance

The Team Background and Research Questions Main Results Data Source and Methodology

The Team

Luyao Zhang* Data Science Research Center, Social Science Division, Duke Kunshan University China

> SciEcon CIC United Kingdom

Tianyu Wu Duke Kunshan University China

> SciEcon CIC United Kingdom

Saad Lahrichi Duke Kunshan University China

Jiayi Li Duke Kunshan University China

✓ Data Science, Finance, Cryptocurrencies
 ✓ Cultivate undergraduate research
 ✓ Across different time zones

* Corresponding Author Luyao, Tianyu, and Saad are joint 1st authors, and Jiayi and Carlos-Gustavo are 2nd authors.

Carlos-Gustavo Salas-Flores Duke Kunshan University China

Background and Research Questions

The Big Picture

- Artificial Intelligence an important technique of algorithmic trading in finance and cryptoeconomics.
- 2. Lack of **established pipeline** leads to process inconsistency and makes ceteris-paribus comparison difficult.
- 3. No **open-source coding algorithms** to evaluate and compare different trading strategies.

Our Questions

1. A generally applicable data science pipeline:

What are the inputs, analysis, and output dashboard in this workflow?

2. A comparative study in Applications to Finance and Cryptoeconomics:

How can this data science pipeline be generally applicable to design, program, and evaluate algorithmic trading of stock and crypto assets with conventional algorithms?

Main Results

Data Source and Methodology

Moving Averages (MA) Crossover

Volume-Weighted Average Price (VWAP)

Data Source and Methodology

Sentiment Analysis

Pairs Trading

Introduction to Data Science Pipeline

O_s

Introduction to Data Science Pipeline

Figure 1: Our proposed data science pipeline for algorithmic trading

Demonstration with Four Conventional Algorithms

Moving Averages Crossover Volume-Weighted Average Price Sentiment Analysis Pairs Trading

Moving Averages Crossover

Variable	Frequency	Unit	Description
Date	daily	YYYY-MM-DD	Date and time for which the data were recorded
Close	daily	USD	Price at which the stock ended trading in a given time period
Short MA	daily	USD	Average price of a security within a certain period, typically 50 days
Long MA	daily	USD	Average price of a security within a certain period, typically 200 days
Signal	-	-	Buy-and-sell signal (e.g., TSLA, AAPL for stock, BTC, ETH for crypto)

Table 1: Moving Average Crossover: Data Data Source: Alpha Vantage API

Moving Averages Crossover

Take Ether (ETH) for example:

ETH Buy and Sell Signals: MA Crossover Rule

Figure 2: Buy-and-Sell Signal: ETH moving averages crossover

ETH Portfolio Time Series: MA Crossover Automated Trading Strategies

Figure 3: Portfolio time series: ETH moving averages crossover

Moving Averages Crossover

Take Ether (ETH) for example:

ETH Gross ROI: MA Crossover Strategy

Figure 4: Gross ROI: ETH moving average crossover vs. buy-and-hold

Moving average crossover strategy ROI: 849.84% Buy & hold strategy ROI: 11.97%

ETH Annualized Sharpe Ratio: MA Crossover Strategy

Figure 5: Sharpe Ratio: ETH moving average crossover vs. buy-and-hold

MA Sharpe Ratio
 Buy&Hold Sharpe Ratio

Moving average crossover strategy Sharpe ratio: 0.98 Buy-and-hold strategy Sharpe ratio: 2.60

Volume-Weighted Moving Average

Variable	Frequency	Unit	Description
Date	5 min	YYYY-MM-DD HH:MM:SS	Date and time for which the data were recorded
Close	5 min	USD	Price at which the stock ended trading in a given time period
VWAP	5 min	USD	Average price of a security within a day, adjusted for its volume. Available for an API call only for traditional stocks; manually calculated using the formula for crypto
Ticker	-	-	Stock symbol (e.g., TSLA, AAPL for traditional, BTC, ETH for crypto)
Interval	5 min	min/hr/day	Time difference between two data points

Table 2: Volume-Weighted Moving Average: Data Data Source: Alpha Vantage API

Volume-Weighted Moving Average

Take Ether (ETH) for example:

ETH Buy and Sell Signals: VWAP Crossover Rule

ETH Portfolio Time Series: VWAP Crossover Automated Trading Strategies

Figure 7: Portfolio time series: ETH volume-weighted moving average

- Cash

------ Holding ------ Total

Figure 6: Buy-and-Sell Signal: ETH volume-weighted moving average

Volume-Weighted Moving Average

Take Ether (ETH) for example:

ETH Gross ROI: VWAP Strategy vs. Buy&Hold

----- Gross ROI ----- Buy&Hold Gross ROI

Figure 8: Gross ROI: ETH volume-weighted moving average vs. buy-and-hold

Moving average crossover strategy ROI: -3.93% Buy & hold strategy ROI: -4.26%

ETH Sharpe Ratio: VWAP Strategy vs. Buy&Hold

Annualized Sharpe Ratio
 Buy&Hold Annualized Sharpe Ratio

Figure 9: Sharpe Ratio: ETH volume-weighted moving average vs. buy-and-hold

Moving average crossover strategy Sharpe ratio: -1.62 Buy-and-hold strategy Sharpe ratio: -0.52

©Luyao Zhang, Tianyu Wu, Saad Lahrichi

Variable Name	Frequency	Unit
Date	daily	YYYY-MM-DD
Tweets	-	-
Stock Price	daily	USD
Crypto Price	daily	USD

Table 3: Sentiment Analysis: Raw VariablesData Sources: Snscrape API, Yahoo Finance API, Alpha Vantage API

ID	Frequency	Unit	Description
P_{comp}	per tweet	-	A normalized compound score that sums every lexicon rating and takes values from -1 to 1
EMA_t (10-day)	daily	USD	Exponential moving average of adjusted closing price, where $EMA_0 = P_0$ and $EMA_t = (1 - \alpha)EMA_{t-1} + P_t$, $\alpha = 2/(s+1)$. For span $s \ge 1, s$: decay in terms of span P_t : day t closing price
Raw Trading Position	daily	USD	$P_t - EMA_t$
Sentiment Category	daily	Negative, Positive, Neutral	$\begin{array}{l} \text{Negative: } P_{comp} < \bar{P}_{comp} - 0.2\sigma_{P_{comp}} \\ \text{Positive: } P_{comp} > \bar{P}_{comp} + 0.2\sigma_{P_{comp}} \\ \text{Neutral: } P_{comp} \geq \bar{P}_{comp} - 0.2\sigma_{P_{comp}} \text{ or } P_{comp} \leq \bar{P}_{comp} + 0.2\sigma_{P_{comp}} \end{array}$
Trading Positions	daily	-	1 represents buy, and -1 represents sell

 Table 4: Sentiment Analysis: Calculated Variables

Take Bitcoin (BTC) for example:

Figure 10: Buy-and-Sell Signal: BTC Sentiment Analysis

Take Bitcoin (BTC) for example:

BTC Portfolio time series: sentiment analysis

Take Bitcoin (BTC) for example:

BTC Gross ROI: sentiment analysis vs buy-and-hold

Figure 12: Gross ROI: BTC Sentiment Analysis vs Buy-And-Hold

> Sentiment strategy ROI: 54.57% Buy & hold strategy ROI: 27.00%

Sharpe Ratio: Sentiment Strategy VS. Buy&Hold

Figure 13: Sharpe Ratio: BTC Sentiment Analysis vs Buy-And-Hold

Sentiment strategy Sharpe Ratio: 1.24 Buy & hold strategy Sharpe Ratio: 0.69

Pairs Trading

Variable name	Frequency	Unit
Date	daily	YYYY-MM-DD
Close	daily	USD
Asset Name	-	-

Table 5: Pairs Trading: Data Data Source: Alpha Vantage API

Variable name	Description
P-value	P-value from Engle and Granger's cointegration test
Hurst Exponent	The Hurst exponent is a value between 0 and 1 that serves to evaluate the mean-reversion property of a time-series
Half-life	A value λ that tells how long it takes for a time series to mean-revert
Times Crossing the Mean	Times the spread goes across the mean during the formation period

 Table 6: Pairs Trading: Calculated Variables

Threshold	Value Using \mathbf{S}_{simple}	Value Using ${\rm S}_{\rm normal}$
Short	2σ	$\mu+2\sigma$
Buy	-2σ	$\mu-2\sigma$
Exit	0	μ

Table 7: Pairs Trading: Trading Signals

Pairs Trading

Take Binance USD Token (BUSD) & EOS.IO Token (EOS) pair for example:

Figure 14: Buy-and-Sell Signal: BUSD & EOS Pair Trading

Pairs Trading

Portfolio time series: pairs trading

Take Binance USD Token (BUSD) & EOS.IO Token (EOS) pair for example:

Figure 15: BUSD & EOS Portfolio time series: Pairs Trading

Gross ROI: pairs trading vs buy-and-hold

Figure 16: BUSD & EOS Gross ROI: Pairs Trading vs buy-and-hold

> Pairs Trading strategy ROI: 24.92% Buy & hold strategy ROI: 0.00%

3

O a

Future Research and Practices

Future Research and Practices

Thank you

Working Paper: https://arxiv.org/abs/2206.14932 Data and Code: https://github.com/sciecon/srs2021

> Corresponding to Luyao (Sunshine) Zhang: <u>lz183@duke.edu</u> <u>yulinzurich@gmail.com</u>

Duke Scholar Page for Sunshine: http://scholars.duke.edu/person/luyao.zhang

Industry 4.0 Open Educational Resource Initiatives: <u>https://ie.pubpub.org/</u> <u>https://ce.pubpub.org/</u> <u>https://ie.pubpub.org/</u>