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1 Introduction

Neural activity is fundamental to cerebral activity, which in turn is central to the
normal functioning of any living body that possesses a neural system. It is important,
therefore, that we dedicate to constructing a simplistic but comprehensive model that
describes the dynamics behind this important process—the neurodynamics—with as many
details as possible.

The physical module of neural activity, the neuron, will be the focus of our inquiry.
At rest, neurons maintain an electric potential difference in and out of their membrane,
known as the resting potential. Then they receive an electrical stimulus on their dendrite
end and should it be sufficiently powerful, it would trigger the cell to enter a process
where the potential difference fluctuates. An example of such activity is shown in Figure
1, where a single-peak pulse is generated. In a living body, this would correspond to a
single signal.
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Figure 1: Example of neural activity

The mechanism behind primarily relates to two cations, sodium (Na™) and potassium
(K*) (Figure 2). At resting potential, membrane proteins called Na-K pumps maintain
the potential through net active transport of sodium out of the cell and potassium into the
cell, the former being greater in scale, hence that the resting potential is negative. When
activated, as shown in the aforementioned figure, voltage-gated Na*t channels will open,
in order to raise the neuron’s internal potential up to and above 0, until voltage-gated
K™ channels open to reverse the process, and ad infinitum.
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Figure 2: Neural activity cycle



Such a cycle could lead to the scenario portrayed in Figure 1 under some cases, but
in other cases, more intricate and intriguing phenomena might occur, and those would
match with varying modes of signaling within an organism. Understanding what defines
those various cases would lead us to more properly predict the state of one of the most
fundamental actions in biology. With this motive in mind, we set out to investigate a
neurodynamical model of ionic flow across neuron membranes, leading to the voltage
changes that define neural activity.

In order to carry out a quantitative analysis, some related questions should be set
forward. First, asides from membrane voltage, what other parameters and variables are
there that could help define the neuron’s state? Second, does changing the parameters,
particularly those most susceptible to human manipulation, culminate in any bifurca-
tions of the system’s dynamics? If so, how would those bifurcations match the neuron’s
condition?

To answer those questions, we reviewed the literature to find a suitable dynamic
model for the neuron. Then, with the use of Mathematica, we apply computational
methods to visualize the system’s dynamics evolution, as well as how that evolution
would alter under various parameter settings. One specific parameter that we focus on is
the electric stimulus 7, or the bias current, the manipulable external factor that triggers
neural action. It shall be discovered that under different I as well as other parameters, we
get a series of bifurcations that gives us myriad neural state evolution pathways that fall
into two rough categories: approaching a stable point or entering a perpetual cycle. The
interchanging of the conditions underlying such pathways reveals much greater details,
which are among those that will be covered in the following sections.



2 Literature Review

Neurodynamics, as its name suggests, is the study of dynamical systems in the
context of neuroscience. It focuses on the communication between different parts of the
nervous system and the relationship between nervous systems and the musculo-skeletal
system. The term was firstly introduced in 1989 and has since been further developed
over the last 30 years [7]. At present, most neuroscience researches focus upon voltage-
and second-messenger-gated currents, and neurodynamics is now seen as a crucial part
of injury assessment and treatment [5]. These years has witnessed a moderate amount of
positive therapeutic effects through the use of neurodynamical treatment.

Among the research models, the Na-K model stands out when describing the dynam-
ical behavior of neurons, for it is quite simplified. It can be considered as an extension
of the Hodgkin—Huxley model [4], where Hodgkin and Huxley describe the voltage-gated
currents across the membrane in terms of channel conductance, the equilibrium potential
and activation variable first in 1952. Hodgkin and Huxley manage to determine the three
major currents carried by the squid axon: voltage-gated persistent K* current with four
activation gates, voltage-gated transient Na™ current with three activation gates and one
inactivation gate, and Ohmic leak current, I, which is carried mostly by CI~ ions.

One early simplification of the neural dynamics is the Fitzhugh-Nagumo model[2] of
the neuron. Under appropriate conditions, it is a simple third-order limit-cycle oscillator
like the van der Pol oscillator[10]. The Fitzhugh-Nagumo model has only two dynamical
variables: the membrane potential V' and the K™ activation variable n that is proportional
to the number of activated membrane channels, which is the same choice in the Na-K
model. Qualitatively, this model succeeds in capturing the trends in the dynamics of
neuron potentials, but it is lacking in terms of describing concrete details.

When considering a similar Na-K model to describe the neurodynamics, modeling in
one dimension is worth consideration[5]. Such a one-dimensional model can be regarded
as a reduction of the Hodgkin—Huxley model when all transmembrane conductance has
fast kinetics. One example of such a system is the space-clamped membrane having the
Ohmic leak current. In this model, it possesses the main concepts of the dynamical
system theory: equilibrium, stability, attractor, phase portrait, and bifurcation.

The fundamentals for the Na-K model are introduced in the book by Nolte[8], where
he described the formulae for the dynamical system in terms of time derivatives of the
membrane potential and the potassium activation variable. He also gave qualitative
descriptions of the bistability and bifurcation properties that ensue from this model,
without much quantitative detail. In order to conduct quantitative analysis, we have
gathered empirical data from more previous works, to assign values to the equation
parameters, such as the resting potentials of sodium[1], and the electrical capacitance of
neuronal membranes|3].



3 Methodology

The model is described as follows:

CV=I-g-(V—=EL) = gna mu(V)(V = Ena) — gxn - (V — Eg)

;o Neo(V) —n
T
where v v
m(V) =1/ (1 + exp(Lm =V
nee(V) =1/ (14 exp(*2 =)

With V and n as defined previously, the term g, - (V — Ep) refers to the leak I, from
channels for ions other than Na®™ and K*, primarily chlorine. Here, g; represents the
conductance of such channels while E;, is the membrane potential difference for the ion
at rest. Similarly, gxn - (V — Ek) describes the potassium flow current I of potassium
channels, and gy, - Moo (V)(V — En,) describes the sodium flow current Iy,. The various
g terms are defined the same except the ion they stand for, same with the E terms. m
is the same as n except for Na™. In our model, there is the crucial assumption that Na*
currents are triggered instantaneously compared to K, which has a finite lag time 7.
Strictly speaking, 7 ought to depend on V', but the extent of this dependence is relatively
small, so in this model we treat it as constant. m., and n,, are the activation variables
when t — oo, and for they each have a k term as shown that determines how swift
they approach 1 as V' — oo, as well as a Vjq ¢ that marks 50% activation, known as the
threshold.

We could now analyze the planer system of V' (mV') and n and discover the dynamics
of neurons using Mathematica to plot the system’s evolution under different parameters.
To begin, the solution for the V-nullcline is

I =g (V= EL) — gxamoo(V) (V — Ena)

a gk - (V — Ex)

It typically has the form of a cubic parabola. (Shown in Figure 3)
The solution for the n-nullcline is

n=ns(V)

n

which is the steady state of Kt activation function.
In the case of Figure 3 (low-threshold Kt current), we could observe that the null-
clines divided the phase plane into four regions:

(a) Both V and n increase. Na*t channel and Kt channel open. This would lead to a
upstroke of the action potential.

(b) V decreases but n increases. Na® channel closes but K™ channel still opens. This
leads to a downstroke.

(¢) Both V' and n decrease. Here Na™ channel and K channel are both closed. This
is when the refractory period happens.

(d) V increases but n decreases. Na't channel partial opens and K™ continues to de-
activate, leading to a relative refractory period, then to an excitable period, and
possibly to another action potential.
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Figure 3: Nullclines of the Na-K model with low-threshold (V},,,, = —45mV’) Kt current

3.1 Equilibria

The equilibria of the system are where the nullclines intercept. The system in Figure
3 has only one equilibrium, which is also the resting state. This equilibrium is stable.

But, when we have different settings, we could end up with more than one equilibria.
In Figure 4 where the K* threshold is high, we have three equilibria: A (unstable spiral),
B (saddle point), C (stable node). In this case, C is the resting state.
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Figure 4: Phase portrait of the Na-K model with high-threshold (V;,., = —25mV) K+t
current

3.2 Bistability

Most neural models are bistable, usually with one stable focus equilibrium corre-
sponding to the resting state and one stable limit cycle attractor corresponding to the
repetitive firing state.



-20

-40

(mV)

-60

Membrane voltage,

-80

-100
0 5 10 15 20 25 30

Time (ms)

Figure 5: Voltage verses time plot in Na-K model with low-threshold K* current
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Figure 6: Phase portrait of the Na-K model with high-threshold and smaller 7

For the system in Figure 6, it is defined not only by a high K* threshold, but also
by a smaller 7 = 0.152 compared to the previous case, where 7 = 1. The resting state
came from the partially activated Nat and leak channels. The repetitive firing state is
caused by the KT channel deactivating too fast so that the voltage could not return to
the sub-threshold range. The voltage of spiking states is shown in Figure 7.

The trajectory in Figure 6 is the approximation of separatrix (it is a homoclinic
orbit). The stable manifold is inside the trajectory. If the initial state starts within the
trajectory, it would start the stable limit cycle. If it is outside the trajectory, it would
end up in the resting state. As in Figure 6, all time units will be in ms.

Through the analysis of the model, we discovered that the Na-K model could undergo
multiple types of bifurcations. By numerical simulation with the parameters found in the
literature, we summarized the bifurcations in the results section.
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Figure 7: Voltage verses time plot in spiking states

4 Results

4.1 Saddle-Node Bifurcation

Firstly, the system undergoes the saddle-node bifurcation, as we mentioned above.
Figure 8 summarized its behavior: when the injected current increases, the saddle and
stable node equilibria approach each other, coalesce, and annihilate each other.

We could solve for the required bias current I (the unit of which we take to be pA)
of the bifurcation by transforming the equilibrium equation

0=1-gr-(V—EL) = gnaoo(V) (V = Exa) — gxnoo(V) (V — Ex)
to solve for I:
I'=g.-(V—EL)+ gnaMmoeo(V) (V — Exa) + gxneo (V) (V — Ek)

The solution (Figure 8) is called the bifurcation diagram of saddle-node bifurcation.
For all plots, I.,; refers to I, the bias current.

But from the simulation, we discovered another type of saddle-node bifurcation. This
type is called Saddle-Node bifurcation on Invariant Circle. The bifurcation occurs on an
invariant circle, which is defined by ”any solution starting on the circle remains on the
circle”. Before the bifurcation, the invariant circle consists of two trajectories: the longer
one start from the saddle and end at the node (drawn in the first subfigure in Figure 9),
the shorter one goes the other way along the x-axis, also start from the saddle and end
at the node. Both trajectories are heteroclinic (start from one equilibrium and end at
another one). When the bifurcation happens, the small trajectory shrinks, and the large
heteroclinic trajectory becomes a homoclinic invariant circle. After the bifurcation, the
circle becomes a limit cycle.

The change of parameters for these two bifurcations is the time constant 7 of the K*
current. Since the K™ current has a high threshold, the time constant has little influence
on steady state. But it has significant effects in action potential. If the current is fast
(Figure 8), it activates during the upstroke, thereby decreasing the amplitude of the
action potential, and deactivates during the downstroke, thereby resulting in overshoot
and another action potential. In contrast, the slower K+ current (Figure 9) does not
have time to deactivate during the downstroke, thereby resulting in undershoot, with V
going below the resting state.
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4.2 Andronov-Hopf Bifurcation
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iagram of Na-K model with Saddle-Node

Na-K model also undergoes Hopf Bifurcation, both supercritical and subcritical.
The Hopf bifurcation happens when the equilibria change from a stable spiral to an



unstable spiral. This is because that as the injected bias current increases, the real part
of eigenvalues changed from negative to positive. The supercritical Hopf Bifurcation
is that when the bifurcation happens, it gives birth to a stable limit cycle. Also, the
amplitude of the limit cycle increases as the injected current increases. The subcritical
Hopf Bifurcation is that when the bifurcation happens, an unstable limit cycle vanishes.
The phase portrait and Bifurcation Diagram of Supercritical Hopf bifurcation could be
found in Figure 10.
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Figure 10: Phase portrait and Bifurcation Diagram of Na-K model with Supercritical
Andronov-Hopf bifurcation

When we plot the bifurcation diagram of subcritical Hopf bifurcation, we discovered
an interesting phenomenon as we increase the bias current. After the subcritical bifur-
cation, the model undergoes two saddle-node bifurcations. Details are shown in Figure
11.
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Figure 11: Phase portrait and Bifurcation Diagram of Na-K model with Subcritical

Andronov-Hopf bifurcation

5 Application and Biological Significance

The research of the Na-K model is considered as one of the most important parts
based on dynamical system, in neurodynamics studies. Through behavioral testing, we
found that it could capture much subtler behavior of neurons realistically, and could help

describe neurons’ various functions.

Na-K model can accurately describe the physical processes of ion currents through
neuron membranes and the dependence of these currents on membrane potentials, and
this method can also be applied in a broader way. At present, many neuroscience studies
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deal with voltage- and second-messenger-gated currents, which enables neurodynamics
methodology to be an important part of injury assessment and treatment clinically. These
years has shown many positive therapeutic results with neurodynamical treatment in
clinical practice. So the simulation result of Na-K model, (i.e. those visualizations in
the argument above), could help physicians to interpret the result more accurately, and
can illustrate physiological explanations for the patients, in order to make it clear about
potential abnormal reflexes among the neurons.

In addition, the function of our research in neurons is not limited to help solve
human pathology problems, but also beneficial for the development of artificial neural
networks. Biological neurons have provided excellent examples of the complexities of
neural behavior, but they seem to be too complex as models for artificial neurons in the
neuron networks. Therefore, a reasonably simplified model, like the Na-K Model, can
genuinely help scientists to construct idealized neuron behavior either computationally
or in hardware implementations in the future. This implies that a more reasonable and
accurate interpretation of the model is beneficial for the progress of Artificial Intelligence
in the future.
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6 Conclusion

In our research, we investigated the Na-K model, a neurodynamical model that
simplifies the physics of neural electric potential changes to the best extent and is an
improvement on past models. We obtained our results through numerical simulation by
Mathematica to visualize the phase portrait of when membrane potential and K channel
activation variable change as functions of time, tending specifically to the observation of
bifurcation phenomena under different parameters, most notably the bias current stimu-
lus, as well as the neurons’ on activation threshold for K* channels.

The outcomes show that depending on the height of K channel thresholds and bias
current intensities, we could have either saddle-node or Andronov-Hopf bifurcations. In
the former case, there may exist a limit cycle that surrounds an unstable equilibrium
with a high rate of change of K channel activity and all other parameters controlled.
This implies that in neurons where these channels react fast, the same signal might
lead to a repetitive firing where in others it leads to but a single peak. This discovery
is essential for physicians to solve pathology problems by explicitly understanding the
potential abnormal reflexes of the neurons. But it is not limited to human problems in
this rapidly evolving environment. The study of their behaviors is conducive to develop
artificial neural networks, and then promote the development of artificial intelligence in
the future.
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7 Appendix
Simulation code (Mathematica)

Manipulate[
Show [
Plot[{(current - bkmrk[[4]] (v - bkmrk[[9]]) -
bkmrk [[3]] (1/(1 + Exp[(bkmrk[[10]] - v)/bkmrk[[5]1]1]1) (v -
60)))/(bkmrk[[2]] (v + 90)),
1/(1 + Exp[(bkmrk[[11]] - v)/bkmrk[[6]]11)} , {v, -150, 503},
Frame -> True,
FramelLabel -> {Row[{"membrane voltage, ", Style["V", Italic],
" (mV)"},
"N\ (\*SuperscriptBox [\ (K\), \(+\)]\) activation variable, n"},
PlotStyle -> {{Orange, Thickl}, {Green, Thickl}},
AxesOrigin -> {-80, -.2},
MeshFunctions -> {((current - bkmrk[[4]] (v - bkmrk[[9]]) -
bkmrk [[3]] (1/(1 +
Exp[(bkmrk [[10]] - v)/bkmrk[[5]]]) (v -
60)))/(bkmrk[[2]] (v + 90)) -
1/(1 + Exp[(bkmrk[[11]] - v)/bkmrk[[6]1]1)) /. v -> # &},
Mesh -> {{0}}, MeshStyle -> PointSize[Largel],
VectorPlot [{current - bkmrk[[4]] (x - bkmrk[[9]]) -
bkmrk [[3]] ( 1/(
1 + Exp[(bkmrk[[10]] - x)/bkmrk[[5]]])) (x - 60) -
bkmrk[[2]] y (x + 90), ((1/(
1 + Exp[(bkmrk[[11]] - x)/bkmrk[[6]1])) - y)/
bkmrk [[12]1}, {x, -85, 20}, {y, O, 1}, VectorStyle -> Black],
ParametricPlot [
Evaluate [{x[t], y[t]l} /.
NDSolve [{x’[t] ==
current - bkmrk[[4]] (x[t] - bkmrk[[9]1]) -
bkmrk [[3]] ( 1/(
1 + Exp[(bkmrk[[10]] - x[t])/bkmrk[[5]]1]1)) (x[t] - 60) -
bkmrk[[2]] y[t] (x[t] + 90),
y’ [t] == ((1/(1 + Exp[(bkmrk[[11]] - x[t])/bkmrk[[6]1]]1)) -
y[t]) /bkmrk[[12]], x[0] == inv, y[0] == inn}, {x, y}, {t,
100}, MaxSteps -> 10°10]]1, {t, 0, 100},
PlotStyle -> {Red, Thick}], PlotRange -> {{-80, 20}, {-0.3, 1}},
ImageSize -> 1.1 {500, 320}],
Grid[{
{"",
Control[{{time, 20, "time"}, 0, 100, ImageSize -> Tiny,
Appearance -> "Labeled"}1}, {"",
Control [{{current, 4.51, "injected current"}, -10, 200, 1,
ImageSize -> Tiny,
Appearance —>
"Labeled"}]}, {Control [{{bkmrk, {4.51, 10, 20, 8, 15, 5, -65,
0.5, -80, -20, -25, 1},
"} {{4.51, 10, 20, 8, 15, 5, -65, 0.5, -80, -20, -25, 1} —>
"saddle node on invariant circle bifurcation", {4.51, 10, 20,
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8, 15, 5, -65, 0.5, -80, -20, -25, 0.152} ->

"regular saddle node bifurcation", {48.75, 4, 4, 1, 7, 5, -65,
0.5, -78, -30, -45, 1} ->

"subcritical Andronov-Hopf bifurcation", {14.66, 10, 20, 8,
15, 5, -65, 0.5, -78, -20, -45, 1} ->

"supercritical Andronov-Hopf bifurcation"},

ControlType -> PopupMenul}],
Control[{{inn, O, Row[{"initial ", Style["n", Italicl}]}, 0, 1,

ImageSize -> Tiny, Appearance -> "Labeled"}1}, {"",
Control [{{inv, -20, "initial voltage"}, -85, 20,
ImageSize -> Tiny, Appearance —-> "Labeled"}]}},

Alignment -> {{Left, Right}}], ControlPlacement -> Top]
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