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1 Introduction

Risk management is important in many areas of business, as are insurers, which
hold a portfolio of insurance policies that could result in varying degrees of claims [1].
To better help insurers with risk control, many different risk measures have been used
to calculate and evaluate the overall risk exposure [2], and they are divides into two
categories: premium-based and capital-based in Tse’s book [1].

But for business owners and executives, it is more intuitive for them to understand
the current risks faced by the company through one or a few simple numbers. This claim
has contributed to the development of the increasing popularity of the concept of Value-
at-Risk (V aR) since the 90s [3]. As for now, no matter the financial industries but also
financial regulators are making wide use of V aR when measuring the risk of insurers,
banks, and other financial institutions [4]. As a capital-based risk measure, V aR plays
an important role for both financial investors, practitioners, and regulators [1].

In this paper, we will systematically introduce the definition of Value-at-Risk (V aR),
how we can calculate its value with different methods from the insurers’ perspectives, and
evaluate its pros and cons.

2 Notation

Table 1 shows the notations we will mainly use in this paper.

Name Symbol

Value-at-Risk V aR
Confidence Level α
Holding Period ∆t
Loss Variable X∆t

Table 1: Notations

3 Value-at-Risk (VaR)

3.1 Definition

Value-at-Risk (V aR) of a loss variable shows the minimum value of the distribution
such that the probability of a loss greater than that value would not exceed a given
confidence level [1].

For example, suppose a portfolio of insurance policies has a one-year 5% V aR of $1
million, it means that this portfolio has a 95% chance of paying less than or equal to $1
million for the claims over one year.

More intuitively speaking, according to Figure 1, the red line represents the pre-
defined confidence level (0.05 in this example), which is equivalent to saying that the
blue area accounts for 5% of the whole distribution. By definition, V aR, in this case, is
the intersection value between the red line and x-axis, which is approximately 11,645.

Adapted from the V aR expression commonly used in the investment returns [5], we
claim that V aR of measuring the loss variable within a holding period ∆t is expressed to
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Figure 1: V aR visualization

satisfy the following equation:

Prob(X∆t ≥ V aR) = 1− α

where the confidence level α is usually selected to be close to 1, for example, 0.9,
0.95, or 0.99.

3.2 Calculation

The estimation of the probability distribution of the loss variable in a certain holding
period X∆t is the most essential problem in calculating the V aR value. In the following
paragraphs, I will introduce two typical approaches, Historical Simulation Method and
Variance-Covariance Method to calculate V aR, and provide one example for readers to
digest easily.

3.2.1 Historical Simulation Method (HSM)

Simply speaking, Historical Simulation Method (HSM) assumes that future changes
in risk factor variables are exactly equivalent to the past. Following this belief, HSM
takes prior data over a defined period to extract a certain amount of risk factors, and
further uses the outcomes to make future estimations.

In general, suppose that the loss at time t is Xt, then

Xt = X(f1(t), f2(t), · · · , fn(t))

where Xt is influenced by n risk factors.
If we perform first-order difference on the historical loss variables, then the changes

in past T time in each risk factor variable are

∆fi(−t) = fi(−t+ 1)− fi(−t), i = 1, 2, · · · , n; t = 1, 2, · · · , T
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According to the assumption of HSM, we have the future risk factors satisfying

fi(t) = fi(0) + ∆fi(−t), i = 1, 2, · · · , n; t = 1, 2, · · · , T

Thus we can obtain the estimation of future loss distribution by

Xt = X(f1(t), f2(t), · · · , fn(t)), t = 1, 2, · · · , T

With a pre-defined confidence level, this new distribution estimation allows us to
calculate the value of V aR.

3.2.2 Variance-Covariance method

The logic behind Variance-Covariance method is similar to the HSM we introduced
above. However, here we assume that the losses, comprising a certain amount of risk
factors, follow a specific distribution. In real life, it is commonly assumed to be a normal
distribution for convenience, and people will rely on the properties of the normal distri-
bution to make estimations [3]. In other words, V aR can be estimated from a known
probability density function f(x), then with the given confidence level α, it is not difficult
to derive the following equation with the integral format:

1− α = Prob(X∆t ≥ V aR) =

∫ ∞

V aR

f(x) dx

Here are in general two main steps when applying the Variance-Covariance method:
Step 1:
Analyze and estimate the parameter values of the risk factor loss distribution through

historical data, such as variance, mean, correlation coefficient (if a portfolio), etc.;
Step 2:
For one insurance policy, determine the V aR value of each risk factor according

to the given confidence level and the assumed probability density function, and for a
portfolio of insurance policies, further rely on the correlation coefficient between each
risk element to determine the V aR value of the entire portfolio.

3.2.3 Example

In this section, we create a simple application scenario of how V aR can be used and
calculated from the insurers’ perspective.

We generate 100 random variables Xi ∼ N (10, 000, 1, 0002), where each variable
represents the claim value ($) within one day from the previous 100 days (Appendix C),
and we apply the two methods above to calculate the V aR value under different confidence
levels, 0.99, 0.95, 0.9. We also include the theoretical value derived from the normal
distribution, and found out that compared to Variance-Covariance method, Historical
Simulation Method might be more susceptible to some outliers, and together with some
endogenous limitations of interpolation function, it somewhat gives estimates with a
larger error. Table 2 shows the derived results.

Code implementation is specified in Appendix A.
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α 99 95 90

Historical Simulation Method 12692.8 11711.5 11390.5
Variance-Covariance Method 12339.8 11631.5 11253.9

Thoretical Value from Normal Distribution 12326.3 11644.9 11281.6

Table 2: V aR Estimation: Comparison of Historical Simulation Method,
Variance-Covariance Method, and Theoretical Value

3.3 Evaluation

Coherence is one of the most commonly used theories to evaluate the pros and cons
of risk measures [1]. In this section, we will use the four axioms of measures (Appendix B)
to evaluate whether the risk measure V aR satisfies the property of coherence.

3.3.1 Translational Invariance

For a loss variable X and any nonnegative constant a, it is not difficult to derive

V aR(X + a) = V aR(X) + a

Proof: According to the definition of V aR, consider the loss variable Y = X + a,
then

1− α = Prob(Y∆t ≥ V aR(Y )) = Prob(X∆t ≥ V aR(Y )− a)

But for the definition of V aR of loss variable X, it satisfies

1− α = Prob(X∆t ≥ V aR(X))

Therefore,

Prob(X∆t ≥ V aR(Y )− a) = Prob(X∆t ≥ V aR(X))

and it implies that V aR(Y )−a = V aR(X) according to the uniqueness of cumulative
density function, and thus it is natural to derive the result that V aR(X+a) = V aR(X)+
a. □

This means that the risk measure V aR satisfies the requirement of Translational
Invariance.

3.3.2 Positive Homogeneity

For a loss variable X and any nonnegative constant a, it is not difficult to derive

V aR(aX) = aV aR(X)

Proof: According to the definition of V aR, consider the loss variable Y = aX. then

1− α = Prob(Y∆t ≥ V aR(Y )) = Prob(X∆t ≥
1

a
V aR(Y ))

But for the definition of V aR of loss variable X, it suffices to claim

1− α = Prob(X∆t ≥ V aR(X))
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Therefore,

Prob(X∆t ≥
1

a
V aR(Y )) = Prob(X∆t ≥ V aR(X))

and it implies that 1
a
V aR(Y ) = V aR(X) according to the uniqueness of cumulative

density function, and thus it is naturally to derive that V aR(aX) = aV aR(X). □
This means that the risk measure V aR satisfies the requirement of Positive Homo-

geneity.

3.3.3 Monotonicity

For loss variables X and Y such that X ≤ Y among all the states, it is easy to see

V aR(X) ≤ V aR(Y )

For the simplest case, if X = Y , then naturally V aR(X) = V aR(Y ). And if X < Y ,
then if we let Y = X+a, a > 0, it would naturally direct to the conclusion of Section 3.3.1,
where

V aR(Y ) = V aR(X + a) = V aR(X) + a > V aR(X)

as desired. □
This means that the risk measure V aR satisfies the requirement of Monotonicity.

3.3.4 Subadditivity

V aR does not satisfy the requirement of subadditivity, which causes V aR not to be
a coherent risk measure. In other words, we can not guarantee all loss variables X and
Y , such that

V aR(X + Y ) ≤ V aR(X) + V aR(Y )

Counter Example:
Consider the following two portfolios of insurance policies:
A: There is a 98% probability of paying $50 claim, and a 2% probability of paying $70
claim.
B: There is a 96% probability of paying $40 claim, and a 4% probability of paying $90
claim.

Therefore, for the equal-weighted portfolio A + B, it is easy to calculate that there
is a 94.08% probability of paying $90 claim, a 1.92% probability of paying $110 claim, a
3.92% probability of paying $140 claim, and a 0.08% probability of paying $160 claim.

According to the definition of V aR, we can tell that under 95% confidence level

V aR(A) = 50, V aR(B) = 40, V aR(A+B) = 110

which implies that

V aR(X + Y ) > V aR(X) + V aR(Y ) □

This result is against the principle of subadditivity, which implies that V aR does
not satisfy this requirement of Subadditivity.
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4 Conclusion and Future Work

The core of risk management is the quantitative analysis and assessment of risk. As
the size and liquidity of financial markets have increased over time, the risk measurement
techniques have become more esoteric. However, currently, it is still not possible to find
a single risk measurement method that is suitable for all situations globally. The V aR
method is currently one of the most popular risk measures worldwide since it answers a
critical question that many executives or business owners are concerned about: ”What
is the worst situation” simply with one number. However, it also has a lot of drawbacks.
For example, V aR is not a coherent risk measure and this approach makes it difficult
to capture the expectation value of risks beyond V aR because of its thick-tailed nature.
Some researchers then come up with another revised risk measure, Conditional Value-
at-Risk (CV aR), also known as the expected shortfall, by taking the amount of tail risk
into consideration beyond the V aR cut-point [1].

In the future, we expect to make a comparative empirical study between V aR and
CV aR methods in the application scenario of actuarial science, to better understand how
they work in either one or a portfolio of insurance policies.
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A Appendix A: Python Implementation

Listing 1: Python Code Implementation

# import packages

import numpy as np

import pandas as pd

# set the expected mean and variance to generate random loss variables

mu = 10000

sigma_1 = 1000

s1 = np.random.normal(mu, sigma_1, 100)

# get the dataframe

df_1 = pd.DataFrame(s1, columns = [’claim’])

temp1 = df_1[’claim’].sort_values(ascending=False)

# HSM

## find the percentile from historical data to get VaR

p = np.percentile(temp1, (99,95,90), interpolation=’midpoint’)

# Variance-covariance method

## Calculate the sample mean and variance from the sample data

from scipy.stats import norm

u_1 = df_1.claim.mean()

var_1 = df_1.claim.var()

std_1 = df_1.claim.std()

# Variance-covariance method assumes that the data follows a normal

distribution, thus we use the properties of normal distributions to

calculate VaR

Z_01 = norm.ppf(0.99)

# (R*-u)/std = Z_01

print(Z_01 * std_1 + u_1)

Z_05 = norm.ppf(0.95)

# (R*-u)/std = Z_01

print(Z_05 * std_1 + u_1)

Z_10 = norm.ppf(0.9)

# (R*-u)/std = Z_01

print(Z_10 * std_1 + u_1)

# Theoretical value of the normal distribution (10,000, 1,000,000) under

different confidence levels

norm.ppf(0.99, loc=10000, scale=1000)

norm.ppf(0.95, loc=10000, scale=1000)

norm.ppf(0.9, loc=10000, scale=1000)
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B Appendix B: Axioms of coherent risk measures

A risk measure ρ(·) that satisfies the following four axioms is said to be coher-
ent [1] [6].

B.1 Axiom 1: Translational Invariance

For any loss variable X and any nonnegative constant a,

ρ(X + a) = ρ(X) + a

This shows that if there is a fixed amount increase on the loss variable X, then the
corresponding risk will increase by the same amount.

B.2 Axiom 2: Positive Homogeneity

For any loss variable X and any nonnegative constant a,

ρ(aX) = aρ(X)

This ensures that the change of monetary units of risks would not have a difference
to the risk measure.

B.3 Axiom 3: Monotonicity

For any loss variables X and Y such that X ≤ Y among all the states,

ρ(X) ≤ ρ(Y )

This ensures that the one risk measure cannot be more than the other, if the loss of
the former one is no more than the latter one, under all the states.

B.4 Axiom 4: Subadditivity

For any loss variables X and Y ,

ρ(X + Y ) ≤ ρ(X) + ρ(Y )

This shows that combining different insurance policies would not make the company
riskier and it also implies that the insurer is not able to reduce its risk by dividing its
business into smaller blocks.
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C Appendix C: Data

count claim
0 10679.41806327092
1 10739.47215875537
2 7761.754686393027
3 9205.540236602646
4 10323.726348702214
5 9744.267191356881
6 9474.198168688761
7 10186.787146466913
8 9204.982283050465
9 10882.505567622202
10 10773.366989476392
11 11475.304198452117
12 11344.470876428099
13 11123.605360215517
14 7892.363738487131
15 11040.158482200584
16 9310.390754805629
17 8798.875392182985
18 9170.82421425786
19 9550.057560912257
20 11946.277894855159
21 8930.498232175056
22 9893.389755007567
23 9140.264261795199
24 9029.220927152845
25 9622.517408585885
26 9397.375180644838
27 10561.183401871003
28 9032.522700000383
29 9886.144163193667
30 11592.47400687748
31 11020.01674449707
32 9549.63979715555
33 10241.84301166382
34 10223.027732678638
35 9521.940276307787
36 11436.52923279852
37 10505.532045663707
38 9959.588820034149
39 10216.398800727937

count claim
40 9238.191643058104
41 10615.540130178948
42 10267.233707957997
43 9049.714423297364
44 9797.48039371873
45 10431.93507853403
46 8710.741055822236
47 10279.638546692757
48 8966.593107756402
49 9737.413584848056
50 8822.17871821643
51 9512.768718376947
52 9788.935822542278
53 9665.621777999488
54 9411.595061684056
55 7134.007707867774
56 9463.802308080067
57 9835.04271147001
58 10727.775781749697
59 9618.653767040785
60 9375.921928418686
61 9233.549564352246
62 9887.572080386102
63 13371.1008464959
64 10322.478218680102
65 8710.655285594896
66 8557.083434087397
67 10725.601327715218
68 11852.371407315848
69 8211.84622932242
70 10010.76592019593
71 11588.055565125585
72 11830.540137930991
73 8957.889395275943
74 7773.326790406256
75 11107.326067246562
76 10403.145627606851
77 9464.818712466278
78 9845.896639991319
79 10870.27411702727
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count claim
80 9706.241793381245
81 8974.531546028938
82 10084.027288831725
83 9469.133350983495
84 10119.38177997874
85 8623.753190733232
86 10806.53458271859
87 8532.508427337609
88 9643.284312883654
89 9543.9918614486
90 12014.524829164908
91 8698.601977840734
92 9593.868538604343
93 10183.057728699567
94 10618.623575899472
95 10354.355531739842
96 11455.562855665916
97 9611.04500719501
98 9816.928539400418
99 10784.776910248209
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